"科大国创杯"

2024 年安徽省青少年信息学科普日活动

小学组试题

比赛时间: 2024 年 4 月 13 日 09: 00 ~ 12:00

题目名称	分析	代数	几何	博弈
题目类型	传统型	传统型	传统型	传统型
目录	analysis	algebra	geometry	game
可执行文件名	analysis	algebra	geometry	game
输入文件名	analysis.in	algebra.in	geometry.in	game.in
输出文件名	analysis.out	algebra.out	geometry.out	game.out
每个测试点时限	1 秒	1 秒	1 秒	2 秒
内存上限	512MiB	512MiB	512MiB	512MiB
数据组数	20	25	20	25

提交源程序程序名

对于 C++ 语言	analysis.cpp	algebra.cpp	geometry.cpp	game.cpp

编译选项

对于 C++ 语言	-O2 -std=c++14
-----------	----------------

注意事项与提醒:

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 选手需要要在桌面上建立以选手参赛号为名的目录,并由选手为每道题再单独建立一个子目录,子目录名与对应试题的英文名相同。选手提交的每道试题的源程序必须存放在相应的子目录下。
- 4. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。如果现场有不同要求,以现场为准。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 程序可使用的栈内存空间限制与题目的内存限制一致。
- 7. 只提供 Linux 格式的附加样例文件。
- 8. 评测在当前最新的 NOI Linux 下进行,各语言的编译器版本以其为准。

1 分析

(analysis.cpp)

1.1 问题描述

小可可最近在学数学运算! 他希望考考你,给你两个整数 A, B,询问 $A \times B$ 是否是偶数。

1.2 输入

一行,两个整数 A,B。

1.3 输出

如果 $A \times B$ 是偶数,输出 Yes, 否则输出 No。

1.4 输入输出样例 1

1.4.1 输入样例

13

1.4.2 输出样例

No

1.5 输入输出样例 2

1.5.1 输入样例

1.5.2 输出样例

Yes

1.6 约定和数据范围

数据点 $1 \sim 5$, $1 \le A, B \le 10^4$ 。 数据点 $6 \sim 10$, $1 \le A, B \le 10^9$ 。 数据点 $11 \sim 20$, $1 \le A, B \le 2^{64} - 1$

2 代数

(algebra.cpp)

2.1 问题描述

小可可最近在学习代数运算中的点积!

给你两个长度为 n 的向量,求它们的点积。对于两个向量 (a_1,a_2,\cdots,a_n) 和 (b_1,b_2,\cdots,b_n) ,点积定义为 $a_1b_1+a_2b_2+\cdots+a_nb_n$

2.2 输入

第一行,一个整数 n。

第二行,n个整数,代表 a_1,a_2,\ldots,a_n 。

第三行,n个整数,代表 b_1,b_2,\ldots,b_n 。

2.3 输出

一行,一个整数,表示两个向量点积的结果。

2.4 输入输出样例 1

2.4.1 输入样例

5

 $1\ 2\ 3\ 4\ 5$

 $5\ 4\ 3\ 2\ 1$

2.4.2 输出样例

35

2.5 输入输出样例 2

2.5.1 输入样例

5

 $1\ 2\ 3\ 4\ 5$

 $1\ 2\ 3\ 4\ 5$

2.5.2 输出样例

55

2.6 约定和数据范围

数据点 $1 \sim 4$, $1 \leq n, a_i, b_i \leq 10$ 。

数据点 $5 \sim 10$, $1 \le n, a_i, b_i \le 1000$ 。

数据点 $11 \sim 15$, $1 \leq n, a_i \leq 1000, b_i = 1$ 。

数据点 $16 \sim 21$, $1 \leq n, a_i \leq 1000000, b_i = 1$ 。

数据点 $22 \sim 25$, $1 \le n, a_i, b_i \le 1000000$ 。

3 几何

(geometry.cpp)

3.1 问题描述

小可可最近在学习平面几何! 给定平面上的 n 个点 $(x_1, y_1), (x_2, y_2), \cdots, (x_i, y_i)$ 。 根据题目要求,输出下列两个值其中一个:

- 1 任意两点间欧几里得距离最大值的**平方**,对于两个点 (x_i, y_i) 和 (x_j, y_j) ,欧几里得距离定义为 $\sqrt{(x_i x_j)^2 + (y_i y_j)^2}$ 。
- 2 任意两点间曼哈顿距离最大值,对于两个点 (x_i,y_i) 和 (x_j,y_j) ,曼哈顿距离定义为 $|x_i-x_j|+|y_i-y_j|$ 。

3.2 输入

第一行,两个整数 n, op,n 为平面内有多少个点,op 为 1 则求欧几里得距离最大值的**平** 方,若 op 为 2 则求曼哈顿距离最大值。

第 $2 \sim n + 1$ 行, 每行两个数 x_i, y_i , 表示平面上的一个点。

3.3 输出

一行,一个整数,表示答案。

3.4 输入输出样例 1

3.4.1 输入样例

- 5 1
- 3 4
- 1 2
- 5 2
- 3 1
- 2 3

3.4.2 输出样例

16

3.5 输入输出样例 2

3.5.1 输入样例

- 5 2
- 3 4
- 1 2
- 5 2
- 3 1
- 2 3

3.5.2 输出样例

4

3.6 约定和数据范围

数据点 $1 \sim 2$, $op = 1, 1 \leq n \leq 10^3, 1 \leq x_i \leq 10^4, y_i = 1$ 。 数据点 $3 \sim 6$, $op = 1, 1 \leq n \leq 10^3, 1 \leq x_i, y_i \leq 10^9$ 。 数据点 $7 \sim 10$, $op = 2, 1 \leq n \leq 10^3, 1 \leq x_i, y_i \leq 10^9$ 。 数据点 $11 \sim 14$, $op = 2, 1 \leq n \leq 10^6, 1 \leq x_i \leq 10^9, y_i = 1$ 。 数据点 $15 \sim 20$, $op = 2, 1 \leq n \leq 10^6, 1 \leq x_i, y_i \leq 10^9$ 。

4 博弈

(game.cpp)

4.1 问题描述

小可可和小聪聪最近在玩黑白棋! 在介绍本问题之前,我们先介绍黑白棋规则:

- 1 游戏使用标准的 8×8 棋盘,上面初始时有四枚棋子:两枚黑色棋子和两枚白色棋子,按照对角线交叉排列。
- 2 游戏开始时,黑方先行。
- 3 玩家的目标是通过翻转对手的棋子,将棋盘上的大多数格子占为己有。
- 4 每一步, 玩家必须将自己的棋子放在一个合法的位置上。合法的位置必须满足以下条件:
 - 新放置的棋子必须与棋盘上已有的同色棋子在一条直线(水平、垂直或对角线)上夹住对方的一串棋子(夹住的意思是,在夹住的一端是己方的棋子,另一端是对方的棋子)。
 - 在夹住对方棋子的同时,所有被夹住的对方棋子都会被翻转成己方颜色。
- 5 如果某一方无法合法落子,则该回合轮到对方继续行动。
- 6 游戏继续进行,直到棋盘被填满或双方都无法合法落子。
- 7 游戏结束时,棋盘上棋子数较多的一方获胜。如果双方棋子数相同,则为平局。

给定一个 $n \times n$ 棋盘上的黑白棋残局,对于接下来所有的可能局面——也就是说,黑方白方轮流行棋,白方先行,走到双方都无法行棋,在所有的可能状态中,最终黑方获胜的有多少种,白方获胜的有多少种,平局有多少种。

在本题中,我们定义残局为最多有不超过 10 个未被放入棋子的格子。

需要注意的是:我们给出的棋盘不一定能够从一个合法的开局得到。你无需关心当前棋盘 局面是如何形成的——即便它并不连通。

4.2 输入

第一行,一个整数 n,表示这个棋盘的大小是 $n \times n$ 。

接下来 n 行,每行 n 个整数,表示棋盘。如果这个数是 0,表示这里是白子,如果这个数是 1,表示这里是黑子,如果这个数是 -1,表示这里是空的。

4.3 输出

一行,三个整数,黑方胜利的状态数,白方胜利的状态数,平局的状态数。

4.4 输入输出样例 1

4.4.1 输入样例

3

-1 0 1

 $0\ 1\ 0$

10 - 1

4.4.2 输出样例

 $2 \ 0 \ 0$

4.5 输入输出样例 2

4.5.1 输入样例

4

-1 -1 -1 -1

-1 0 1 0

-1 1 0 1

-1 -1 -1 -1

4.5.2 输出样例

1813 2494 519

4.6 约定和数据范围

数据点 $1 \sim 6$, $1 \le n \le 3$, 空格子数不超过 4。数据点 $7 \sim 12$, $1 \le n \le 4$, 空格子数不超过 5。数据点 $13 \sim 18$, $1 \le n \le 4$, 空格子数不超过 10。数据点 $19 \sim 23$, $1 \le n \le 5$, 空格子数不超过 5。数据点 $24 \sim 25$, $1 \le n \le 5$, 空格子数不超过 10。